

pEASY®-Blunt3 Cloning Kit

Please read the user manual carefully before use.

Cat. No. CB301

Storage

Trans1-T1 Phage Resistant Chemically Competent Cell at -70°C for six months; others at -20°C for nine months

Descriptions

pEASY ®- Blunt3 Cloning Vector provides dual *Eco*R I and dual *Not* I enzyme digestion sites. It is designed for cloning and sequencing *Pfu*-amplified PCR products. The cloned insert can be released from a single enzyme digestion.

- 5 minutes fast ligation of *Pfu*-amplified PCR products.
- Ampicillin resistance gene for selection.
- · Easy blue/white selection.
- T7 promoter, SP6 promoter, M13 forward and M13 reverse primers for sequencing.
- T7 promoter and SP6 promoter for in vitro transcription.
- *Trans*1-T1 Phage Resistant Chemically Competent Cell, high transformation efficiency (>10⁹ cfu/μg pUC19 DNA) and fast growing.

Kit Contents

Component	CB301-01	CB301-02	
Component	(20 rxns)	(60 rxns)	
pEASY ®-Blunt3 Cloning Vector (10 ng/μl)	20 μ1	3×20 μl	
Control Template (5 ng/µl)	5 μl	5 µl	
Control Primers (10 µM)	5 μ1	5 μ1	
M13 Forward Primer (10 μM)	50 μl	150 µl	
M13 Reverse Primer (10 μM)	50 μ1	150 μ1	
Trans1-T1 Phage Resistant	10×100 นl	30×100 μl	
Chemically Competent Cell	10^100 μι	30^100 μ1	

Preparation of PCR Products

- 1. Primer requirement: primer cannot be phosphorylated
- 2. PCR Enzyme: Pfu DNA polymerases
- 3. Reaction conditions: in order to ensure the integrity of amplification products, 5-10 minutes of post-extension step is required. After amplification reaction, use agarose gel electrophoresis to verify the quality and quantity of PCR product

Setting Up the Cloning Reaction System

Add following components into a microcentrifuge tube.

PCR products 0.5-4 µl (can be increased or reduced based on PCR product yield, not more than 4 µl)

pEASY ®- Blunt3 Cloning Vector 1 μl

Gently mix well, incubate at room temperature (20°C-37°C) for 5 minutes, and then place the tube onice.

1. Optimal amount of insert

Molar ratio of vector to insert = 1:7 (1 kb, ~20 ng; 2 kb, ~40 ng)

2. Optimal volume of vector: 1 µl (10 ng)

3. Optimal reaction volume: 3~5 µl

4. Optimal incubation time

(1) $0.1\sim1$ kb (including 1 kb): $5\sim10$ minutes (2) $1\sim2$ kb (including 2 kb): $10\sim15$ minutes (3) $2\sim3$ kb (including 3 kb): $15\sim20$ minutes

(4) ≥3 kb: 20~30 minutes

Use the maximum incubation time if the insert is gel purified.

5. Optimal incubation temperature: for most PCR inserts, the optimal temperature is about 25°C; for some PCR inserts, optimal results can be achieved with higher temperature (up to 37°C).

Transformation

- 1. Add the ligated products to 50 μl of *Trans*1-T1 Phage Resistant Chemically Competent Cell and mix gently (do not mix by pipetting up and down).
- 2. Incubate on ice for 20~30 minutes.
- 3. Heat-shock the cells at 42°C for 30 seconds.
- 4. Immediately place the tube on ice for 2 minutes.
- 5. Add 250 µl of room temperature SOC or LB medium. Shake the tube at 37°C (200 rpm) for 1 hour.
- 6. In the meantime, mix 8 μ l of 500 mM IPTG with 40 μ l of 20 mg/ml X-gal. Spread them evenly onto a selective LB plate. Place the plate at 37°C for 30 minutes.
- 7. Spread 200 µl or all transformants on the pre-warmed plate. Incubate at 37°C overnight.

Identification of Positive Clones and Sequencing

Analysis of positive clones

- 1. Transfer 5~10 white or light blue colonies into 10 μl Nuclease-free Water and vortex.
- 2. Use 1 µl of the mixture as template for 25 µl PCR using M13 forward and M13 reverse primers.
- 3. PCR reaction conditions

94°C	10 min	
94°C	30 sec	
55°C	30 sec	30 cycles
72°C	x min*—)
72°C	5-10 min	

- * (depends on the insert size and PCR enzymes) the PCR product size from vector self-ligation is 254 bp.
- 4. Analyze positive clones by restriction enzyme digestion and DNA sequencing.

 Inoculate positive clones on LB/Amp⁺ liquid medium, grow at 37°C for at least 6 hours at 200 rpm. Isolate plasmid DNA by plasmid MiniPrep Kit. Analyze colonies by restriction enzyme digestion.

Sequencing

Analyze the sequence by sequencing with M13 F, M13 R and T7 promoter.

PCR for control insert (700 bp)

Component	Volume	Final Concentration
Control Template	1 μl	0.1 ng/μl
Control Forward Primer (10 µM)	1 μl	0.2 μΜ
Control Reverse Primer (10 µM)	1 μl	0.2 μΜ
2×EasyPfu PCR SuperMix	25 µl	1×
Nuclease-free Water	Variable	-
Total Volume	50 μl	-

Thermal cycling conditions for control insert

94℃	10 min	
94℃	30 sec	,
55℃	30 sec	30 cycles
72℃	1 min —)
72℃	10 min	

Ligate 1 µl of control PCR insert with 1 µl vector. Hundreds of colonies should be produced with cloning efficiency over 90%.

Lac operon sequence: bases 2,861-3,021, 191-420

Multiple cloning site: bases 10-153 SP6 priming site: bases 164-183 M13 reverse priming site: bases 201-217

LacZ start codon: base 205 Lac operator: bases 225-241 pUC origin: bases 544-1,217

Ampicillin resistance ORF (c): bases 1,362-2,222

fl origin: bases 2,422-2,859

M13 forward priming site: bases 3,001-3,017 T7 promoter priming site: bases 3,024-3

(c) = complementary strand

				BstZ I
M13 Forward Primer	T7 Promoter	Apa I Aat II	Sph I BstZ I	Nco I Not I Sac II
				1 / 1001
GTA AAA CGA CGG CCA GT	TGT AAT ACG ACT CAC TAT AGG GCG AAT	TGG GCC CGA CGT (CGC ATG CTC CCG GCC (SCC ATG GCG GCC GCG G
CAT TTT GCT GCC GGT CA	ACA TTA TGC TGA GTG ATA TCC CGC TTA	ACC CGG GCT GCA	GCG TAC GAG GGC CGG (CGG TAC CGC CGG CGC C
EcoR I		0.1 - 5.	BstZ I	
		Spe I EcoR I	Not I	
GAA TTC GAT TGG ATC GCC C	AAG GGC GAT CCC AAT CA		666 666	
GAATIC GAITGG AIC GCC C	PCR Product	AC IAG IGAAIT CGC	GGC CGC	
CTT AAG CTA ACC TAG CGG G	GAA TTC CCG CTA GGG TTA G1	FG ATC ACT TAA GCG	CCG GCG	
Pst Sal Nde	01			
FSt Carl Naci	Sac I BstX I Nsi I		SP6 Promoter	M13 Reverse Primer
	GGA GAG CTC CCA ACG CGT TGG ATG CAT	ACCUTE ACT AFT CO	EA TAC TOT CAC OTA AAT	GTC ATA GCT GTT TCC TG
CIG CAG GIC GAC CALAIG	GGA GAG CTC CCA ACG CGT TGG ATG CAT	AGC TIG AGT ALT CI	IA IAG IGI CAC CIA AAI	GICAIAGCI GII ICC IG
GAC GTC CAG CTG GTA TAC	CCT CTC GAG GGT TGC GCA ACC TAC GTA	TCG AAC TCA TAA GA	AT ATC ACA GTG GAT TTA	CAG TAT CGA CAA AGG AC